CONJUNTO:es una colección de elementos considerada en sí misma como un objeto. Los elementos de un conjunto pueden ser cualquier cosa: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido como incluido de algún modo dentro de él.
PROBABILIDAD:es un método por el cual se obtiene la frecuencia de un acontecimiento determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados posibles, bajo condiciones suficientemente estables.
ESPACIO MUESTRAL:consiste en el conjunto de todos los posibles resultados individuales de un experimento aleatorio.
MODELO DE FRECUENCIA RELATIVA: es el cociente entre la frecuencia absoluta de un determinado valor y el número total de datos.
MODELO SUBJETIVO: Se utiliza cuando los datos no se encuentran disponibles por lo tanto no es posible calcular la probabilidad a partir del desempeño anterior . Por tanto se calcula la probabilidad a partir del mejor criterio. E l modelo es utilizado cuando se desea asignar probabilidad a un evento que nunca ha ocurrido.
MODELO CLASICO: La probabilidad de éxito de basa en el conocimiento previo del proceso implicad
UNION:Acción que consiste en juntar dos o más elementos para formar un todo o realizar una misma actividad.
INTERSECCION: es una operación que resulta en otro conjunto que contiene los elementos comunes a los conjuntos de partida. Por ejemplo, dado el conjunto de los números pares P y el conjunto de los cuadrados C de números naturales, su intersección es el conjunto de los cuadrados pares
EVENTOS INDEPENDIENTES:
Cuando A y B son dos eventos con probabilidades positivas, hemos visto que en general la probabilidad condicional del evento B dado el evento A es diferente de la probabilidad del evento B. Sin embargo, cuando se tiene la igualdad: P(B/A) = P(B) es de especial importancia porque esto quiere decir que el evento B no depende o es independiente del evento A. Es decir, no importa si ocurrió o no el evento A puesto que la ocurrencia o no de A no afecta al evento B
EVENTO MUTUAMENTE EXCLUYENTES: son aquellos en los que si un evento sucede significa que el otro no puede ocurrir. Si bien suelen usarse en teorías científicas, también son parte de las leyes y los negocios. Como resultado, entender los eventos mutuamente excluyentes puede ser importante para una variedad de disciplinas.
EVENTOS COLECTIVAMENTE EXHAUSTIVOS:cuando contiene todos los resultados posibles de un evento.
EVENTOS COMPLEMENTARIOS: cuando su union es igual al espacio muestral, es decir, sean A y B Dos eventos de un experimento.
PROBILIDAD CONDICIONAL: es la probabilidad de que ocurra un evento A, sabiendo que también sucede otro evento B. La probabilidad condicional se escribe P(A|B), y se lee «la probabilidad de A dado B».
REGLA DE LA MULTIPLICACION Si se tienen varios eventos sucesivos e independientes entre sí, la probabilidad de que ocurran todos ellos a la vez corresponde a la multiplicación de las probabilidades de cada uno de los eventos.
REGLA DE ADICION: Los eventos compuestos se generan al aplicar las operaciones básicas de los conjuntos a los eventos simples. Las uniones, intersecciones y complementos de eventos son de interés frecuente. La probabilidad de un evento compuesto a menudo pueden obtenerse a partir de las probabilidades de cada uno de los eventos que lo forman. En ocasiones, las operaciones básicas de los conjuntos también son útiles para determinar la probabilidad de un evento compuesto.
TECNICAS DE CONTEO:Las técnicas de conteo son aquellas que son usadas para enumerar eventos difíciles de cuantificar.
COMBINACION: Conjunto limitado de números o elementos que pueden disponerse de distinta manera
PERMUTACION:cada una de las distintas formas en que se pueden ordenar todos los elementos de un conjunto.
No hay comentarios:
Publicar un comentario